Foldable Robotic Elephant Trunk

Mannat Rana, Engineering (Robotics) Mentor: Daniel Aukes, Assistant Professor Ira A. Fulton Schools of ENgineering

Background:

Hydrogel Robots can have more degrees of freedom in a more compact manner compared to standard robotic manipulators [1]. These degrees of freedom can then be used to imitate complex animal movements such as curling, twisting, extension, and contraction [2].

Research Question:

How can hydrogels be used to imitate complex animal-like movements?

Progress so far:

 Learned how to create hydrogels

Simplified Design Model

Research Method:

- Create the one-dimensional walking robot to better understand the control and design needed for using hydrogels effectively.
- Create a joint that will enable three dimensional movements using the hydrogels.
- Design an assembly involving three layers of hydrogels that

- Designed the PCB needed to operate the robot
- Acquired all the hardware needed to build robot

will act as the trunk.

 Code and test the assembly to understand what hydrogels need to be turned on for the trunk to curl and twist.

Acknowledgements: Roozbeh Emami

References

[1] C. Wartelle, W. Schuhmann, A. Blöchl, and F. Bedioui,

"Integrated compact biocompatible hydrogel-based amperometric sensing device for easy screening of drugs involved in nitric oxide production by adherent cultured cells," *Electrochimica Acta*, vol. 50, no. 25-26, pp. 4988–4994, 2005. cells. *Electrochimica acta*, *50*(25-26), 4988-4994.

[2] H. Yuk, S. Lin, C. Ma, M. Takaffoli, N. X. Fang, and X. Zhao, "Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water," *Nature Communications*, vol. 8, no. 1, Jan. 2017.

