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Abstract
Having a well-rounded fixed leg design for a quadruped inevitably limits performance across diverse tasks, while
tunability enables specialization and leads to better performance. This paper introduces a sub-500-gram quadruped
robot with a rich leg design space. Made with laminate design and fabrication techniques, its legs have a range of
tunable design parameters, including leg length, transmission ratio, and passive parallel and series stiffness. The legs
are also straightforward to model, low-cost, and fast to manufacture. We propose methods to span the leg’s feasible
design space and construct simulation environments for training a locomotion policy with reinforcement learning to
remove the need for manual controller design and tuning. This policy not only works across leg designs but also
exploits the unique dynamics of each leg for better locomotion. A curation process is employed to select designs
given performance goals, which is more interpretable than optimization and provides insights for design improvements
and discoveries of design principles. Thanks to the tight integration of design, fabrication, simulation, and control, our
proposed pipeline produces leg designs with performance that aligns with the simulation, while the learned locomotion
policy can be used successfully on the real robot. The fast longitudinal running design reaches a maximum speed of
0.7 m/s or 5.4 body lengths per second, and the low cost of transport (COT) design has a COT of 0.3.
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1 Introduction

This paper introduces new methods for spanning a
quadruped robot’s leg design space and learning locomotion
policy that exploits each leg’s unique dynamic properties,
enabling selections of legs for different use cases. Although
many biologists including Ghigliazza et al. (2003); Geyer
et al. (2006) and Pontzer (2007), and roboticists including
Galloway et al. (2011); Spröwitz et al. (2013); Hubicki et al.
(2016); Hutter et al. (2016); Badri-Spröwitz et al. (2022)
and Haldane et al. (2016) have shown that leg designs
significantly impact legged locomotion performance and
the optimum design depends on the operation environment
and performance objectives, most quadruped robots in the
literature and on the market made by Hutter et al. (2016);
Katz et al. (2019); Grimminger et al. (2020); Boston
Dynamics (2024) and Unitree (2024) have only one fixed leg
design. While they may work well enough for most tasks,
some performance will inevitably be sacrificed when dealing
with specific scenarios. In this paper, we propose that the
legs of quadruped robots should be more tunable so that
the best designs can be selected, fabricated, and installed
based on the tasks and environments. This is also more
cost-effective than developing a brand-new robot for every
niche scenario. Additionally, this approach allows designers
to discover trends by quickly testing different designs to
make more informed decisions and improvements.

As shown in Fig. 1, this paper consolidates this idea
into a quadruped robot that has a footprint similar to an
adult hand, weighs under 500 grams, and is actuated by
eight servo motors. Its legs are designed and fabricated with

laminate techniques, enabling us to include many tunable
design parameters such as leg length, transmission ratio,
and passive stiffness in a compact package. These key
parameters can also be automatically mapped to the actual
leg geometry, simplifying tuning and remaking. Through
our extensive testings and studies performed on these
laminate devices over the years, their behaviors can be
more easily captured and simulated than conventional design
and fabrication processes. This tighter loop of designing,
simulating, making, and testing allow us to better explore the
robot’s design space.

This work also highlights the use of reinforcement
learning for training a locomotion policy purely in simulation
that directly works across drastically different leg designs
in the real world without manual controller design and
tuning. More importantly, it can exploit the unique dynamic
properties of each leg design for better locomotion
performance. Our efforts in aligning the sensor values,
physical properties, and performance metrics between the
simulated and real environments enable us to evaluate and
study the robot’s performance in simulation and expect
good agreement from the selected designs in the real world.
Moreover, since the simulation can be run in parallel across
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Figure 1. The main components of the proposed quadruped
robot with tunable legs. (a) Its design space contains a range of
laminate legs with different geometry and passive compliance.
(b) A locomotion policy is trained with reinforcement learning in
simulation to exploit the dynamics of each leg. (c) It also helps
us identify trends between locomotion metrics and design
parameters. (d) Three curated standout leg designs have fast
longitudinal speed, fast turning speed, and low cost of transport
from left to right, respectively. The supplementary video is
available at https://youtu.be/A7lSHpgceH4.

multiple CPU cores and at a speed much faster than the real
time, we can thoroughly investigate the relationship between
performance metrics and design parameters, enabling us to
identify potential design improvement directions, confirm
existing theories, and even discover new design principles.

In summary, the contributions of this paper are: 1. a
quadruped robot platform with a rich leg design space
that exists in both the simulation and real world bridged
together with laminate design and fabrication techniques;
2. a reinforcement learning framework for training policies
that exploit different leg dynamics toward better locomotion
performance; 3. and an interpretable and insightful curation
process for navigating the robot’s performance map.

The remainder of the paper is organized as follows:
Section 2 lays out the related literature and justifies the
novelties and contributions of this work. Section 3 to
6 dive deep into the multiple sub-components of our
proposed method, including the quadruped platform, tunable
leg, locomotion policy, and curation. After the experiment
details in section 7, section 8 presents and discusses
interesting interpretations and discoveries of the results.
Section 9 concludes the paper and points out possible future
extensions.

2 Background
The literature of biology and robotics has many studies on
the impact of leg designs on locomotion performance. The
fact that walking and running dynamics can respectively be
described by the classical inverted pendulum and spring-
loaded inverted pendulum (SLIP) models as discussed

by Geyer et al. (2006) highlights the importance of leg
length and stiffness for legged locomotion. Pontzer (2007)
discovered that the energy cost of transport (COT) for
terrestrial animals has a simple inverse relationship with
effective limb length or hip height. Ghigliazza et al. (2003)
showed that tuning the leg stiffness can achieve robust and
stabilized gait even with a straightforward fixed-leg reset
control strategy. Many robots have also been developed by
Saranli et al. (2001); Spröwitz et al. (2013); Hubicki et al.
(2016); Hutter et al. (2016); Haldane et al. (2016) and Badri-
Spröwitz et al. (2022) to demonstrate the role of leg stiffness
for locomotion speed, stability, impact resistance, efficiency,
and power output. Additionally, Galloway et al. (2011)
conducted experimental investigations with a hexapod with
tunable stiffness C-legs and revealed that payload and terrain
both impact the optimum leg stiffness in terms of speed and
efficiency.

These prior works are our inspiration and guidance for
designing tunable legs and selecting their design parameters.
One of our previous works studies the fabrication, tuning,
modeling, and simulation of laminate robot legs that weigh
around 15 grams in Chen and Aukes (2023). We have
demonstrated the ability to design their stiffness coefficients
and nonlinearities, affecting their jumping performance.
Based on similar principles, we have also designed a 400-
gram quadruped with tunable compliant legs in Chen et al.
(2023). We have observed various performance responses
when adjusting its leg stiffness against open-loop walking
gaits.

Although open-loop feed-forward controllers have also
been utilized by other researchers including Saranli et al.
(2001); Spröwitz et al. (2013) and Badri-Spröwitz et al.
(2022), they are often limited to simple conditions and
require extensive tuning for different designs. Model-based
controllers are promising alternatives for integrating sensory
feedback and achieving stable, robust, and fast locomotion
as demomnstrated by Katz et al. (2019). Recently, learning-
based controllers or policies trained through reinforcement
learning are widely adopted by researchers including Lee
et al. (2020); Margolis et al. (2024) and Aractingi et al.
(2023) for quadrupeds and achieved impressive results
thanks to their ability to handle more complex and hard-to-
model dynamic systems. Raffin et al. (2022) and Bjelonic
et al. (2023) even trained learning-based controllers to work
with passive, compliant legs for better performance. Since
our proposed robot has many different leg designs with
drastically different physical properties, we have selected a
learning-based approach to reduce the amount of manual
modeling and tuning.

Although there are many advancements in both the design
and control of legged robots, most works tend to focus on
only one of the aspects mainly: 1. complex leg designs with
specialized transmission and passive compliance are usually
paired with simple controllers, or 2. state-of-the-art control
algorithms are developed and validated on relatively simple
and generic platforms. This separation leads to inefficiency
in the design process, increases customization difficulties for
different applications, and limits the performance ceiling.

To address these issues for quadruped robots, many
efforts have been made to simultaneously optimize the leg
design and controller, also called ”co-design”. The process
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of robot co-design generally involves an outer loop for
optimizing hardware and an inner loop for solving motion
planning or optimal control problems similar to works
from Chadwick et al. (2020) and Dinev et al. (2022).
Interestingly, reinforcement learning is also leveraged for
these problems, first to train a design-conditioned policy
that works across robots of different designs, and then
used to find optimal designs for certain objectives as in
Belmonte-Baeza et al. (2022) and Bjelonic et al. (2023).
Our approach to identifying an appropriate leg design for
a certain performance goal is very similar to this idea with
one deviation: instead of relying on optimization to find
the design, we span a discretized version of the design
space and evaluate all its designs to uncover relationships
between performance metrics and design parameters, and to
better understand the trends and trade-offs for more informed
decision-making. These general trends may also apply
to other platforms. Moreover, many existing works focus
mostly on simulation with few considerations of fabrication
constraints and limited hardware validation. Their robots
also have relatively simple structures with minimal closed-
loop linkages and passive leg stiffness. In contrast, our
work emphasizes generating a rich leg design space that
is straightforward and fast to fabricate, promoting more
experimental validation and rapid adaptation in the field.

3 Quadruped Platform
As shown in Fig. 2, the proposed quadruped platform has a
footprint similar to an adult’s hand, weighs under 500 grams,
and is symmetric about its xz and yz plane. Each of its legs
is actuated by two identical servo motors acting in series: the
hip servo swings the leg in the sagittal plane, and the knee
servo extends and retracts it. The abduction and adduction
joint has been omitted to reduce system complexity, weight,
and cost. The robot is also equipped with a microcontroller
(MCU) to handle the low-level logic of the servos and an
inertial measurement unit (IMU). The locomotion policy is
run on a laptop, and the robot communicates with it through
a USB cable. The robot is powered by a battery on board.
The mechanisms connected to the hip servo are called the
”tunable leg”. Table 6 in the appendix lists the details of the
parts.

From our experience developing and testing the prede-
cessor of this platform in Chen et al. (2023), this relatively
small form factor works well with the intended materials and
fabrication method and reduces fabrication time and cost.
While we have restricted ourselves to studying leg tuning in
the sagittal plane, the proposed methods could be extended to
more complex platforms. Some design principles discovered
should also be applicable to other legged robots.

4 Tunable Leg

4.1 Design and Fabrication
Inspired by the SLIP model, the proposed tunable leg is
designed to function similarly to a pogo stick, as shown in
Fig. 3. It is composed of four main components: a femur
link that connects the hip and knee joint, a four-bar linkage
that converts knee rotation into linear foot translation going
through the hip, a parallel spring that resists leg retraction,

x y

Hip servo

Knee servo

Electronics

Battery

z

Figure 2. The fabricated quadruped platform with the leg
design dvx for fast longitudinal running. Each of its legs has two
servos for the hip and knee joints. An onboard battery powers it.
The electronics handle the low-level logic and communication
with a laptop.

and a series spring that allows the foot to be displaced even
if the knee servo is fixed.

The core of the leg is a multi-layer, multi-material
laminate device consisting of two layers of fiberglass sheets
with 0.45 mm and 0.72 mm thickness, one layer of 0.1 mm
polyester sheet, and two layers of heat-activated adhesives.
Table 6 in the appendix lists the details of the materials. The
function of a specific section can be altered by changing its
number of layers. When all layers are present, the section
acts as a rigid link. If only the thin polyester layer is left,
this flexure behaves as a simple pin joint. The compliance
of the springs can be attributed to the flexible links that only
use one of the fiberglass layers, 0.45 mm one for the parallel
spring and 0.72 mm one for the series spring as shown in Fig.
3(b) and (c).

To fabricate a leg, the laminate device is first made using
the same process in Chen and Aukes (2023). An extra layer
of 1.7 mm fiberglass sheet is added to links designed not
to bend to improve rigidity. Then, the femur link is also
cut from the 1.7 mm fiberglass sheet. Finally, the leg is
assembled with screws and some 3D-printed parts. Friction
tape is also attached to the foot. Excluding the servo, a single
leg weighs around 30 grams.

4.2 Design Parameters
As marked in Fig. 3(d), we define five independent design
parameters: the total travel length of the foot ldee′ , the offset
between the foot travel and the hip lde′o, the range of input
knee rotation θdfaf ′ , parallel stiffness kdp , and series stiffness
kds . These parameters are more aligned with the SLIP model
and form a more feasible and intuitive design space than
specifying all the dimensional variables of the proposed leg.

To describe the nonlinear relationship between these
parameters and the leg shape, a kinematic model consisting
of rigid links and pin joints is developed for the leg, as shown
in Fig. 3(d). Although the links of the springs are flexible, our
previous study has shown that the pseudo-rigid-body model
(PRBM) for an end-loaded cantilever beam with end forces
is a simple but effective approximation of their behaviors,
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Figure 3. (a) An example of the tunable laminate leg as built. (b) Retracing the foot will bend the flexible link of the parallel spring.
(c) The series spring allows foot retraction through the flexible link, even if the input is fixed. (d) Kinematic model of the tunable leg
with the design parameters marked.

which converts a flexible link into two rigid links connected
through a torsion spring whose spring constant depends on
the link geometry and the material’s Young’s modulus.

For the parallel spring, bending of the link di becomes
rotation of the torsion spring at joint h, and the torque
required at the knee joint τa can be derived with
static analysis. Theoretically, the relationship between τa
and the input knee rotation is not linear, leading to
nonconstant parallel stiffness. Still, we approximate it as
kp = τmax

a /θfaf ′ , where τmax
a is the required input torque

at maximum knee rotation.
For the series spring, since the flexible link jk is

purposefully positioned so that the virtual torsion spring
aligns with the knee joint, the series stiffness ks equals the
torsion spring stiffness.

4.3 Leg Geometry Optimization
With this kinematic model, a constrained optimization
problem is formulated to find the appropriate leg shape
that matches a set of design parameters. Specifically,
its input variables are the link lengths of the four-bar
linkage {lab, lbc, lcd, lad, lbe}, the initial crank angle θbag ,
and the flexible link lengths for the parallel and series
springs {lgi, ljk}. Other dimensional parameters are either
predetermined constants or depend on these. For example,
laf is fixed, and lfg is calculated based on the initial
configuration.

The selected cost function is the total link length, based on
the assumption that a smaller leg mass is desirable for most
locomotion scenarios. A smaller mass usually means less
energy expenditure, lower material cost, and smaller form
factors that lead to less chance of colliding with other legs or
environments.

Many constraints are applied to generate desired leg
designs, as listed in Table 1, whose main objectives are linear
foot travel with the desired offset and length, correct parallel
and series stiffness, and a reasonable leg proportion and
dimension. The foot trajectory is constrained to deviate less
than 2% of the total travel length from the desired straight-
line trajectory. These constraints are enforced for 11 leg
states corresponding to evenly spaced input angles. To be
noted, the desired foot trajectory is also chosen to be evenly

Table 1. Leg optimization constraints

Term Equation

Foot trajectory
|xe − xd

e | < 0.02lee′

|ye − yd
e | < 0.02lee′

Parallel stiffness |kp − kd
p| < 0.02kd

p

Series stiffness |ks − kd
s | < 0.02kd

s

Parallel spring PRBM joint torque τh < 0.1N ·m
Transmission angle π − θbcg > 0.52 rad

Foot clearance ye − yother < −0.02m

Leg Centroid
| 1
nall

∑
all x− xo|

< 0.01m

Total leg length leo < 0.14m

Leg width |xany − xo| < 0.05m

Femur link length 0.028 < lao < 0.1m

Parallel spring flexible link length 0.005 < lgi < 0.1m

Series spring flexible link length 0.005 < ljk < 0.1m

Other link lengths 0.02 < lother < 0.1m

spaced. The parallel and series stiffness are constrained to be
within 2% of the desired values. To ensure the parallel spring
is not deformed beyond yield by the servo, the torque applied
to its PRBM joint is limited to a maximum of 0.1 N·m.
The transmission angle of the four-bar linkage needs to be
greater than 30°(0.52 rad) to stay away from its kinematic
singularity. Some vertical clearance between the foot and the
remaining points is necessary to avoid other links hitting the
floor. The centroid of all the points should also be closer
to the foot trajectory horizontally for a more balanced leg.
Upper bounds are set for the total length of the leg and all
link lengths to reduce unintentional bending and twisting.
Lower bounds are also set for all the link lengths to ensure
manufacturability. The width of the leg is limited to prevent
the front and rear legs from hitting each other or having a tiny
swinging range. The leg optimization problem is solved with
differential evolution proposed by Storn and Price (1997) and
implemented in the SciPy Python package.
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4.4 Design Space

The leg design space D ∈ R5 formed by the vectors of
design parameters d = [loe′ , lee′ , θfaf ′ , kp, ks] is discretized
with a step size sD. A simple algorithm similar to the
”flood fill” used in computer graphics for painting a region
as documented in Newman and Sproull (1979) is proposed
to span D, as shown in Algorithm 1. The algorithm grows
the design space by repeatedly checking the neighbors of
known valid designs and adding new valid ones. A design
is considered valid if the optimization routine can find a leg
design that satisfies all the constraints. The neighbor of a
design d is defined as dn = d+ sD · Irow where Irow is
one of the rows of the identity matrices I5 and −I5, which
is an extension to the 2 dimensional 4-connectivity. We also
require that dn ≥ d0 where d0 is the lower feasible limit
of the design parameters. It should be noted that, due to
the stochastic nature of our chosen optimization algorithm,
multiple trials may be needed to find a valid leg for the same
design parameter; invalid designs are added back to a buffer
D′ for checking again. For the same reason, our current
implementation may miss a small number of valid designs.

Algorithm 1 Spanning the design space

D′ = {d0}
D ← ∅
for iteration=1,2,. . . ,n do

remove and get last element d from D′

if d generates valid design then
D ←D ∪ {d}
for dn ∈ neighbors of d do

if dn /∈D′ and dn /∈D and dn ≥ d0 then
D′ ←D′ ∪ {dn}

end if
end for

else
D′ ← {d} ∪D′

end if
end for
return D

5 Locomotion Policy

5.1 Policy Design

In this work, learning a neural network for design-
aware locomotion control is preferred over model-based
approaches for the following reasons: robot dynamics are
complex and difficult to model due to leg properties
that can change design-to-design, including the range of
motion, inertia, and passive compliance; modeling errors
and stochasticity are also inevitably introduced from the
fabrication processes and testing environments, but we want
to avoid manual tuning of each leg design; furthermore,
the hardware has limited torque control accuracy and
bandwidth, further increasing the difficulty of implementing
model-based controllers. While this approach requires
longer training time and sacrifices some interpretability, it
represents an acceptable trade-off and best suits our case.

To control the quadruped with any legs discovered in the
design space, we propose a locomotion policy:

π(at|vcmd
t , qt, q̇t, gt,wt,d,at−1) . (1)

The main goal of the policy is to make the robot follow a
velocity command vcmd

t consisting of the longitudinal speed
vcmd
x and turning speed wcmd

z . Since our robot lacks active
abduction and adduction, we do not command lateral speeds
vcmd
y . The policy has access to a range of sensory feedback

that is also available on the actual prototype, including joint
angles qt ∈ R8, joint velocities q̇t ∈ R8, body orientation
gt ∈ R3 expressed as the gravity direction in the robot’s
body frame, and body angular velocities wt ∈ R3. Since the
policy must accommodate different leg designs, the design
vector d is also provided in the observations. Additionally, as
discovered in preliminary experiments, the policy observes
its last action at−1, essential for successful learning. The
action at ∈ R8 represents the desired joint positions sent to
the servos.

The policy is a fully connected neural network with three
hidden layers of size [512, 256, 128] and ELU activations
operating at 100 Hz. The actions and observations are scaled
and offset to approximately within the range of [−1, 1] before
being fed into the policy.

5.2 Learning Environment
5.2.1 Simulation MuJoCo has been selected as the
physics simulator for its capability of simulating closed-
loop linkages, fast computation, and versatile modeling
options. Since the legs of our robot are mostly made of
simple geometries, it is straightforward to parameterize its
simulation model so that the sizes and poses of all the links
will be automatically updated to reflect a given leg design.
As the robot’s servos do not have accurate torque control, we
decided to model the dynamics of the entire servo, including
its motor, gearbox, and internal position PID controller,
as an inertia-spring-damper system, which takes a desired
angle as the input and outputs a torque. A maximum output
torque constraint and static friction within the motor are also
added. These values are determined through a set of system
identification experiments.

The frame rate of the simulation is 500 Hz, 5 times
the operation rate of the locomotion policy. Since our
locomotion task has no definite termination condition, a
constant time limit of 5 seconds is employed for every
episode. The velocity command vcmd for the entire episode
is sampled with a curriculum strategy that will be discussed
later. To expose the policy to different legs, a leg design is
also uniformly sampled from the design space D for each
episode.

5.2.2 Domain randomization As listed in Table 2,
randomization of the simulation environment, including
servo dynamics parameters, floor properties, sensor noise,
and system latency, is also applied to reduce overfitting
and make the policy directly deployable in the real world.
The range of the servo parameters are ±10% around the
experimentally identified values to accommodate changes of
the battery voltage, identification inaccuracy, and variations
between individuals. The floor friction coefficient is set to
a relatively large range because the condition of the feet’s
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(a) dh (b) dl (c) dk

Figure 4. Three examples of the simulation environment for
training the locomotion policy. The floor tilt is -5, 0, and 5
degrees, and roughness is 0, 0.005, 0.01 m for (a), (b), and (c),
respectively. The three robots have leg designs of the shortest
height, longest foot travel, and highest stiffness.

Table 2. Domain randomization

Term Min Max Unit

Servo spring constant 1.64 2.00 N·m/rad

Servo damping constant 0.0457 0.0559 Nm/(rad/s)

Servo inertia 4.65e-4 5.69e-4 kg·m2

Servo friction 0.0201 0.0245 N·m
Servo maximum torque 0.519 0.635 N·m
Floor friction coefficient 0.4 1.0

Floor roll and pitch -0.0873 0.0873 rad

Floor roughness 0.00 0.01 m

Joint angle noise -0.05 0.05 rad

Joint velocity noise -1 1 rad/s

Body orientation noise -0.05 0.05 9.81 m/s2

Body angular velocity
noise -0.2 0.2 rad/s

Latency 0.03 0.07 s

Latency noise -0.005 0.005 s

friction tape due to wear and tear and the floor type and
cleanliness can affect the friction significantly. Tilting and
adding roughness to the floor improves the robustness of
the learned policy. Sensor noise and latency are added to
better reflect real scenarios. We find that latency significantly
impacts the robot’s velocity tracking performance, and its
range is based on the experimentally measured value with
some extra tunings. Examples of the simulation environment
are shown in Fig. 4.

5.2.3 Reward Several reward terms are designed to guide
the policy through the reinforcement learning process
toward desirable behaviors. They can be grouped into four
categories: velocity command tracking, motion posture,
action smoothness, and energy efficiency. All the terms are
listed in Table 3, and the total reward is their weighted sum.
We intentionally kept the number of terms minimal to avoid
introducing too much bias and provide the training process
more freedom to discover better strategies. Most of these
rewards are commonly used in the literature such as Lee et al.
(2020); Aractingi et al. (2023) and Margolis et al. (2024). We
add a term that penalizes the hip joint for not moving around
the home position, which helps speed up the learning process
and prevents the robot from settling at a sub-optimal gait with
the legs spreading outward.

Table 3. Reward terms

Term Equation Weight

Velocity command

tracking
exp(−25∥v − vcmd∥2) 2

Body roll and pitch ∥g′
xy∥2 -10

Hip joint off-center

motion
∥ 1
50

∑t
i=t−49 qhipi∥

2 -10

Knee joint limit

violation

∥max(qknee − θfaf ′ ,0)−

min(qknee,0)∥2
-100

Self-collisions nself−collisions -1

Action rate ∥ȧ∥2 -1e-5

Joint torque ∥τ∥2 -0.5

Joint power ∥max(τ q̇,0)∥ -0.02

5.3 Curriculum
For a single quadruped design, the Grid Adaptive curriculum
proposed by Margolis et al. (2024) is a promising way to
gradually push a robot to its locomotion limit and determine
its feasible velocity command space. Although our strategy is
similar to this existing work and the concept also aligns with
the algorithm for spanning the leg design space, a description
is still included for clarity and to highlight the modifications.

The discretized velocity command space V̂ cmd ∈ R2

contains velocity commands v̂cmd = [v̂cmd
x , ŵcmd

z ] with
a step size sV̂ cmd . As shown in Algorithm 2, the
curriculum keeps expanding the command space by adding
the neighbors of a command that the policy can track.
The policy is considered capable of tracking a command if
ema(r̄v) > rthv = exp(−25∥0.5sV̂ cmd∥2), where ema(r̄v)
is the exponential moving average (EMA), with a 0.2
smoothing factor, of the average velocity reward of an
episode. The EMA is not implemented in the original
paper. Still, we find it useful to ensure the policy truly
masters that velocity region instead of passing it because
of luck. Additionally, our definition of neighbors of a
command includes not only the 4-connected ones but also
their reflections about both axes. This can be expressed
as v̂cmd

n = (v̂cmd + sV̂ cmd · Irow) · T where Irow is one
of the rows of the identity matrices I2 and −I2, and
T ∈ {[1, 1], [−1, 1], [1,−1], [−1,−1]}. Since our robot is
symmetric, this encourages the policy to learn locomotion
in all directions equally. It is worth mentioning that the
actual velocity command for an episode is vcmd which
is uniformly chosen within (v̂cmd − 0.5sV̂ cmd , v̂cmd +
0.5sV̂ cmd), where v̂cmd is also uniformly sampled from the
latest V̂ cmd.

For a quadruped with varying leg designs, offering an
individual curriculum for every design may slow down the
training. Many episodes will be wasted on verifying whether
the policy has mastered the same task instead of exposing it
to new and more challenging ones. It may also require too
much memory if the design space is enormous. Therefore,
we only provide individual curriculum to a smaller number
of delegates, each representing a group of similar designs,
which should have similar locomotion characteristics and a
single velocity command space covers them. The delegates
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Algorithm 2 Velocity command curriculum

V̂ cmd ← {0}
while training do

get v̂cmd of an episode when it finishes
if ema(r̄v) > rthv then

for v̂cmd
n ∈ neighbors of v̂cmd do

if v̂cmd
n /∈ V̂ cmd then
V̂ cmd ← V̂ cmd ∪ {v̂cmd

n }
end if

end for
end if

end while

are found by applying the k-means clustering algorithm over
the entire leg design space D, during which every leg design
is also labeled with a corresponding delegate for locating the
curriculum during training.

6 Curation

6.1 Evaluation
Three metrics are established for evaluating the locomotion
performance of each leg design paired with the trained policy
in the simulation. The first metric represents how fast a
design can run along its longitudinal direction while tracking
the commanded speed and is calculated as

mvx =
∑
|[1, 0] · V̂ cmd|i , (2)

where V̂ cmd is the design’s feasible velocity command
space in the form of a matrix whose rows are different v̂cmd.
This essentially sums up all the trackable longitudinal speed
commands v̂cmd

x .
Similarly, the second metric represents how fast a design

can turn while tracking the commanded speed and is
calculated as

mwz
=

∑
|[0, 1] · V̂ cmd|i . (3)

Finally, the third metric represents the average COT
of a design tracking velocity commands with nonzero
longitudinal speed:

mCOT =
1

nv̂cmd
x ̸=0

∑
COT v̂cmd

x ̸=0 , (4)

where COT is the average COT for a velocity command
region around v̂cmd.

To determine each design’s feasible velocity command
space V̂ cmd, the same Algorithm 2 is reused with two
modifications. First, for a design to be considered capable of
tracking velocity commands around v̂cmd, the 100 episodes
average of the average velocity reward r̄v after the robot
reaches steady state has to be greater than rthv . For evaluation,
each episode is 2 seconds long, and the robot is considered
in a steady state after 1 second, which is determined based
on an observation that most runs settle after 0.4 seconds
and applying a safety factor. Second, the neighbors no
longer include reflections that is v̂cmd

n = (v̂cmd + sV̂ cmd ·
Irow). In post-processing, we only keep commands whose

reflections are also trackable so that the feasible velocity
command space remains symmetric.

The COT in (4) is estimated with the data from the same
episodes. For each episode, COTi =

p̄
mg|v̄x| where p̄ and

v̄x are the average positive mechanical power and average
actual longitudinal speed during steady state. We do not
consider the electrical power because it is not modeled in
the simulation, but the COT is calculated similarly using
experimental data from the real robots.

6.2 Selection
Once the metrics for all leg designs are obtained, selecting
a standout design in a specific metric can be accomplished
by sorting and picking the best one. However, due to the
discretization of the velocity command space, it is possible
to have multiple designs with identical scores. Moreover,
since the evaluation process is based on the randomized
simulation environment, the design with the best score may
be a fluke and not represent the majority of the top designs.
Therefore, for each metric, the design with the smallest
average Euclidean distance ∥d− d′∥ to all the top 10%
designs is selected.

7 Experiments
The proposed algorithms and reinforcement learning
were implemented with Python and run on a workstation
computer*. The first step of our experiment was to span the
design space of the proposed tunable leg. We chose a lower
limit d0 = [0.04m, 0.02m, 0.3 rad, 0N ·m/rad, 0.4N ·
m/rad] and a step size sD = [0.02, 0.02, 0.3, 0.1, 0.4].
These values were determined empirically to have a
space that uncovers trends but is not too dense to waste
computation time. We ran Algorithm 1 for 20000 steps or
about 10.5 hours to span the design space. Since the rate of
design discovery became very slow at the end, the design
space was considered sufficiently explored, and enough
designs were gathered.

With the design space established, we then trained
the locomotion policy with a custom implementation
of Proximal Policy Optimization reinforcement learning
developed by Schulman et al. (2017) modified from CleanRL
by Huang et al. (2022) with additional time limit handling
proposed by Pardo et al. (2018). The simulation environment
was computed on the CPU, and the policy optimization was
performed on the GPU. The hyperparameters are listed in
Table 4. For the curriculum, we chose a velocity step size
sV̂ cmd = [0.2m/s, 0.2 rad/s], which provided a reasonable
resolution for the feasible velocity command space. 10
delegate designs were used since we observed that further
increasing the number of delegates does not result in
noticeable performance improvement from early runs. The
training process was terminated after 63000 updates or about
21 hours, at which the command spaces’ growth rate became
very slow. Once the training finished, the final policy was
used for evaluation, which took about 11 hours.

To validate that our proposed methods can curate leg
designs from performance metrics and that the real robot

∗AMD Ryzen Threadripper PRO 7975WX, NVIDIA GeForce RTX 4090
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Table 4. Training hyperparameters

Parameter Value

# of environments 1024

# of steps per update 50

Optimizer Adam

Learning rate adaptive

# of mini-batches 5

# of epochs 5

Discount factor 0.99

GAE parameter 0.95

Clip coefficient 0.2

Policy loss coefficient 1

Value loss coefficient 0.5

Entropy coefficient 0.01

Value loss clipping true

Advantages normalization true

Maximum gradient norm 0.5

behaves similarly as predicted by the simulation, three
standout designs were selected based on the metrics
defined in section 6 A. The legs for each design were
then fabricated and attached to the base. This took
about 4 hours from scratch for an experienced person.
To measure their performance, each version was given
velocity commands that were combinations of vcmd

x ∈
{−0.8,−0.6, . . . , 0.8} and wcmd

z ∈ {−0.4,−0.2, . . . , 0.4}.
Three trials were performed for each command. In each trial,
the robot started from standing still and moved for 2 seconds
under the control of the trained locomotion policy, which
makes the same observations and outputs the same actions
as in (1). The velocity data of the robot were recorded by a
motion capture system†. Servo current and joint velocity data
were also recorded to calculate the COT. For comparison,
similar experiments were carried out in simulation.

8 Results and Discussions

8.1 Design Space
With the proposed tunable leg and design space spanning
method as in section 4 and related settings in section 7, a
total of 409 leg designs were found. Some design examples
are in Fig. 6. To visualize the five-dimensional design space,
plots of it projected onto selected planes formed by pairs
of design parameters are shown in Fig. 5. This is a useful
tool for analyzing the distribution of design parameters and
their interactions, providing insights on the limits of current
design and directions of improvement, as explained next.

In Fig. 5(a), the designs all lie within a triangular region
on the travel offset and travel length loe′ lee′ plane because
the total leg length loe′ + lee′ is explicitly limited during the
leg optimization as in Table 1.

The input range and travel length lee′θfaf ′ plane deserves
some attention as plotted in Fig. 5(b) because it is related
to the transmission ratio or moment arm r = lee′/θfaf ′ of
the four-bar linkage that converts knee rotation to linear foot
travel, which balances the force and speed capability of the

leg in retraction and extension direction. In this case, the
tunable range of the moment arm is from 0.022 m to 0.067 m,
which is implicitly determined by the constraints applied and
the proposed four-bar linkage design.

As shown in Fig. 5(c), the diversity of achievable parallel
stiffness kp decreases almost exponentially as the input
range θfaf ′ increases. This is because the deformation of
the parallel spring required by a large input range is not
physically feasible, and this is enforced by constraining
the maximum PRBM joint torque of the parallel spring. In
contrast, the achievable series stiffness is not affected by the
input range, as shown in Fig. 5(d).

To be noted, although the proposed tunable leg can achieve
a variety of designs, their distribution is far from uniform.
There are more designs around short travel length, small
input range, and no parallel stiffness, which are related to the
nonlinear behaviors from using linkages to convert rotation
to translation and provide parallel stiffness under constraints
of physical feasibility.

In summary, the proposed tunable leg covers a variety
of design parameters, and Algorithm 1 is able to span the
design space. The visualization tool also helps us identify
potential design improvements. For example, if the range
of the moment arm needs to be expanded, some constraints
should be loosened, or another mechanism such as a six-bar
linkage or a rack and pinion should be explored. In addition,
ways to increase the range of parallel stiffness should be
considered, such as changing the material or spring design.

8.2 Locomotion Performance
Fig. 6 shows evaluation results of 10 arbitrarily chosen leg
designs out of all 409 designs evaluated using the method
described in section 6 A. Our trained locomotion policy
generates different feasible velocity command spaces for
different leg designs. The maximum trackable longitudinal
speed is 0.8 m/s, and the maximum turning speed is
0.4 rad/s. As the magnitude of velocity command increases,
the velocity reward or tracking performance decreases.
Additionally, the COT is also significantly affected by the leg
design. The COT also does not decrease monotonically, and
there is an optimum longitudinal speed for minimum COT,
which also depends on the leg design.

Since we evaluated all leg designs, it is possible to
study the relationship between the locomotion performance
and design parameters. This can reveal trends that confirm
existing or even discover new design principles, helping
designers make more informed decisions. Specifically, the
scores of the performance metrics mvx , mwz

, and mCOT can
be plotted against the design parameters as in Fig. 7. Instead
of using the design parameters that forms the design space,
we established 4 more derived design parameters that we
found are more impactful on the performance. They are total
leg length loe′ + lee′ , moment arm r = lee′/θfaf ′ , equivalent
parallel stiffness kp/r2, and equivalent series stiffness ks/r2.
The equivalent stiffness represents the leg stiffness along the
retraction and extension direction as in the SLIP model.

When looking at the average scores versus design
parameters, there are several trends we want to highlight.

†NaturalPoint OptiTrack Prime 17W
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Figure 5. Visualization of the leg design space projected onto selected planes. The colors indicate the number of designs for that
point. (a) The travel offset and travel length plane shows that all designs follow the total leg length constraint. (b) The input range
and travel length plane indicates the achievable transmission ratio or moment arm. The (c) parallel or (d) series stiffness and the
input range planes show that the variety of parallel stiffness depends more on the input range.

ŵcmdz

v̂cmdx
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Figure 6. 10 arbitrarily chosen leg designs, and their feasible velocity command space and the corresponding COT. Each cell has
a size of 0.2 m/s and 0.2 rad/s. Both commands can be either positive or negative. The COT values for longitudinal speed
commands close to zero are omitted.

First of all, there exists a similar optimum series stiffness
around 400 N/m for fast longitudinal and turning speed as
well as low COT. This stiffness, with our robot weighing
about 0.5 kg, corresponds to a natural frequency of 4.5 Hz
in a one-dimensional spring-mass system, which aligns with
the gait frequency of the locomotion policy. This showcases
the effectiveness of our proposed training method in co-
designing the series leg stiffness and control policy. Even
though the notion of natural frequency and resonance is not
introduced anywhere in the process, it is still able to arrive at
the same conclusion. This also confirms and emphasizes the
usefulness of adding series stiffness to the legs of quadruped
robots. Moreover, our proposed method directly generates a
paired control policy that exploits this passive compliance
without manual controller design and tuning. Similarly but
less pronouncedly, the optimum parallel stiffness is around
25 N/m, which we assume is related to the servo torque and
operation efficiency.

The second trend is that longer legs have lower COT,
which agrees with the LiMb model proposed by Pontzer
(2007) that links limb length to COT in biomechanics.
We rediscovered this relationship through our approach,
though it wasn’t part of our original literature review. This
experience gives us confidence that our proposed method has
the potential to discover new design principles and confirm

existing theories that lead to more performant robots. It
achieves this through automating the controller development
of difficult tasks, which, in this case, is efficient running with
a high center of mass and constrained leg workspace due to
potential collisions between long legs.

Lastly, a large moment arm improves all three metrics,
indicating that speed is preferred over force, but the locations
of the optimum points are not conclusive, especially for the
fast turning and low COT. This implies that our selected
servo motor’s 181 to 1 gear ratio is too large. Reducing
it in the future will lead to a better understanding of the
role of gear ratio in locomotion. This demonstrates that
our proposed method can inform designers of directions for
improvement.

8.3 Experimental Validation

The three standout designs selected for experimental
validation are marked with x’s in Fig. 7. Their shapes are
plotted in Fig. 8 for comparison. The low COT design dCOT

has the longest leg length and the fast turning design dwz

has the shortest. The fast longitudinal running design dvx
has longer foot travel. They all have similar moment arms,
parallel stiffness, and series stiffness. The photos of the robot
equipped with the three different legs are shown in Fig. 1.
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and the x’s are the selected standout designs among them. There are two most significant trends: an optimal series stiffness exists
for all three metrics, and longer legs have lower COT.

dvx dwz dCOT

Figure 8. Three selected standout leg designs for (a) fast
longitudinal running, (b) fast turning, and (c) low COT.

To compare the measured performance of the three leg
designs over the tested velocity command space in both the
simulation and real world, the velocity reward and COT
averaged over each longitudinal speed command are plotted
in Fig. 9. These legs perform differently. Specifically, the
fast longitudinal running leg has a higher velocity reward
at high speeds. The fast turning leg has a higher reward at
lower speeds thanks to its better ability to track larger turning
speeds. The low COT leg consistently achieves lower COT
across all commanded longitudinal speeds. Although there
are some discrepancies in the absolute values, the rankings of
the performance in the real world agree with the simulation,
indicating that our proposed method is not only able to
identify designs with different locomotion specialties but
also provides a directly deployable locomotion policy that
functions on the real legs.

This is also confirmed by the best average values of
longitudinal speed, turning speed, and COT for the three leg
designs listed in Table 5. The values are based on the same
experimental data. Take |w̄z|max of dwz as an example,
the maximum absolute steady-state turning speed averaged
over the three trials for each velocity command was first
calculated. Then, the maximum value among them |w̄z|max

and the corresponding absolute values of the command
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Figure 9. The velocity reward and COT averaged over each
commanded longitudinal speed for the three standout leg
designs in simulation and real-world experiments.

|vcmd| were listed in the table. The remaining 8 values in
the table were acquired similarly. The commands are not
necessarily the same for different metrics.

As shown in the table, dvx and dCOT achieved the highest
longitudinal speed and lowest COT respectively, aligning
with the selection intention. The maximum speed of our
robot is around 0.7 m/s or 5.4 body lengths per second, while
the lowest COT is 0.31.

For dwz , although dvx and dCOT do beat it in terms
of the achieved highest turning speed, they have much
larger tracking errors. Given that the evaluation and selection
metric in (3) only sums up all the trackable turning speeds,
requiring both fast speed and small tracking error, this result
is still considered relatively aligned with the selection. We do
want to acknowledge that we did not observe the high turning
speeds for dvx and dCOT in the simulation, indicating that
there are some gaps between the simulation and the real
world.
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Table 5. Best real-world performance of the selected leg designs

d |v̄x|max, |vcmd| |w̄z|max, |vcmd| COTmin, |vcmd|
dvx 0.70, [0.8, 0.0] 0.90, [0.8, 0.4] 0.40, [0.8, 0.0]

dwz 0.52, [0.8, 0.0] 0.45, [0.6, 0.4] 0.52, [0.8, 0.0]

dCOT 0.65, [0.8, 0.0] 1.06, [0.8, 0.4] 0.31, [0.8, 0.0]

We believe that the velocity performance gap between the
simulation and the real environment can be mostly attributed
to the backlash of the laminate legs and servo output shafts,
leading to more vibrations of the robot body. There is
significant play along the non-axial directions of the servo
output shafts, which is mostly due to the wear and tear of
the plastic components over time. Although it is possible to
model this behavior, adding a bearing to support the output
shaft properly would be preferred in the future. It will add
some weight and friction to the system, but it should, at the
same time, improve predictability and durability. Moreover,
if higher quality servos were used, this part of the backlash
may be negligible.

Backlash within the laminate leg is more difficult to
mitigate physically, due to the nature of the flexure joints
and thin beams. In this case, measuring the actual force
and displacement data along both the intended deformation
direction and unintended directions and modeling them
in simulation is more desirable in the future. Generally,
backlash can be modeled as additional degrees of freedom
with compliance, damping, and joint limits. For MuJoCo,
achieving these is relatively straightforward; though we
initially included basklash early in this project, we ultimately
didn’t retain it to prioritize simulation speed and model
simplicity.

Another challenging aspect of modeling backlash for
the proposed system is its uncertainty. Different legs
may behave differently due to uneven wear and tear and
manufacturing variations. In this case, adding randomization
to the simulation and learning an online system identification
module for the controller should also further improve the
overall performance.

There are also some other potential gaps in addition to the
backlash. The contact friction between the feet and floor is
not exactly isotropic, and some stick and slip transitions also
exist, which are difficult to model accurately in simulation.
The COT mismatch may come from the inaccurate estimate
of the motor torque from our lumped servo model. The
torque measurement on the real servo based on the current
reading and a fixed motor constant from the datasheet may
also introduce some errors. In addition, our previous work,
Chen and Aukes (2023), shows that the PRBM is only an
approximation of the leg stiffness because of fabrication
variations and nonideal behaviors of the laminate links and
joints. We plan to reduce these gaps with better models and
more system calibrations in the future.

8.4 Real-World Demonstrations
To demonstrate that the robot and its learned locomotion
policy are relatively robust, we tested our robot with all three
leg designs in less controlled environments. As shown in Fig.
10 and the supplementary video, the robot was given remote

dvx dwz dCOT

Figure 10. The robot traversing different terrains with the three
standout leg designs.

control commands to traverse various terrains, including
rocky or smooth concrete, indoor flooring, and sandy soil.
The robot is able to maintain balance and even handle small
slopes, drops, and gaps. We observed that the robot’s velocity
varies on different surfaces due to slippage and stumbling
over small obstacles. The fast turning design is also more
susceptible to getting trapped in dirt and rocks because of its
short leg length. The low COT design has a very high center
of mass and tends to tip over when passing through a large
slope or drop. These findings showcase the importance of
fast and accessible prototyping of physical robots, allowing
them to be tested in the real world against scenarios that
are difficult to model and capture for revising designs and
performance metrics.

8.5 Handling Novel Applications
Though we selected three standout members based on
common metrics for benchmarking quadruped robots, our
design space also includes leg designs that may be useful for
other specific or niche applications, which can be exposed
by altering our performance metrics. For example, the leg
with the shortest height dh makes the robot more suitable
for crawling through low-clearance places. The leg with the
longest foot travel dl enables the robot to step over tall
obstacles and may be desirable for rough terrains. The leg
with the highest parallel and series stiffness dk is potentially
better at carrying heavy payloads. Their corresponding
robots in the simulation are shown in Fig. 4.

9 Conclusions
This paper introduces a quadruped robot with tunable
laminate legs. We propose methods to identify all its feasible
leg designs, train a locomotion controller that exploits each
design’s unique properties, and curate standout designs
for specific applications. We leverage laminate design and
fabrication techniques to make low-cost, fast-to-fabricate,
and highly tunable quadruped leg designs, simplifying the
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process of bringing robots from simulation to the real
world and aligning simulation with real-world data. This
digital twin of the robot, combined with the adaptability,
robustness, and creativity of reinforcement learning, allows
us to tackle the co-design problem with more realistic models
and richer design space. The generated designs directly
work in the real world and exhibit expected locomotion
performance characteristics. The curation methods and
analysis tools presented take a different approach from the
literature, emphasizing visualization and interpretation of the
connections between design parameters and performance.

Our proposed methods simplify robot customization,
expand design freedom, and encourage exploration and
discovery of design principles. This demonstrates the
benefits and importance of a tight integration of design,
fabrication, simulation, and control. We believe this concept
of streamlining the creation of robots is the key to more
accessible, diverse, and performant robots around us.

This work also opens up many research directions. An
immediate extension of this work based on the same
quadruped platform is studying how other performance
metrics are related to design parameters. For example,
we plan to study how the leg transmission ratio and
parallel stiffness affect the robot’s ability to exert forces
and manipulate objects. One limitation of this work is that
to focus on constructing the pipeline and validating the
concept, we restrict ourselves to only varying the leg design
and using a SLIP-inspired template for a reasonably sized
design space that contains mostly functional designs. In
the future, we plan to increase the robot’s design space
by loosening the constraints and adding new parameters to
explore novel designs and study less understood questions,
such as the benefits of having different front and rear legs
and a compliant spine for quadruped robots.

For more complicated designs, the main components of
the pipeline will stay similar, including the generation of
diverse designs from interesting design parameters, training
a unified design-aware controller, performance evaluation,
trends discovery, and real-world validation. We anticipate
that one of the biggest challenges is how to efficiently
explore a higher-dimensional design space. Even though the
algorithms proposed in this paper should work with a few
modifications, the computation time can quickly increase to
an intractable amount. Two approaches to combat the ”curse
of dimensionality” are proposed. First, we could leverage
GPU acceleration, optimize code implementation, and even
switch to better and faster computation hardware. Second,
we could make the process iterative by allowing designers
to zoom in or out on the design space. The resolution of
the design space could be adjusted by changing the step size
sD for spanning the design space. Boundaries could also be
enforced by checking if the valid neighbors are within the
desired range in Algorithm 1. In this way, the designers could
first explore the design space coarsely and only perform
detailed analysis on focused regions.

Besides the design space, other aspects of the pipeline
would also need attention. The complexity of the neural
network control policy should be increased to handle
more diverse designs. The trends discovery process may
need to be automated with principal component analysis
or more advanced statistical analysis methods. Ensuring

manufacturable designs and the generation of the fabrication
plan will require more care. The gaps between the simulation
and the real world should also be narrowed with real-world
data.

Our long-term goal is to extend this design pipeline
beyond quadruped and legged robots, bringing the benefits
of complex but well-engineered compliance, kinematics, and
dynamics to a broader range of robotic devices such as
underwater or flying robots, grippers, and manipulators.

Acknowledgements

The authors would like to thank Weijia Tao for helping to take the
photos and videos of this paper.

Funding

This material is based upon work supported by the National Science
Foundation under Grant No. 1944789.

References
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Appendix

A Cost of the Prototype
The main items that make up the material cost of the
prototype are listed in Table 6. The prices for the parts in US
dollars were taken on Dec 23rd, 2024, from major vendors in
the United States and did not include tax and shipping costs.
The materials needed for making the laminate legs are based
on the low cost of transport design dCOT , the largest one
fabricated in this paper. The estimated amount of the sheet
materials includes necessary supporting structures. The 3D-
printed parts are only based on their weights. The cost for the
miscellaneous items is a rough estimate. The exact material
cost of the prototype will vary depending on the location,
vendors, time, etc.

For the proposed prototype, the structures that are mostly
the legs is only 2.6% of the total cost. If only the laminate
legs are accounted for, the value is around 2%. At the same
time, as shown in our paper, the design of the legs affects
the robot’s performance for different tasks. Therefore, this
further shows that providing multiple leg designs for a single
robot body can be a cost-effective and performant way to
tailor quadrupeds for different applications.

The labor and machine cost of the prototype are omitted
because they depend on factors that are difficult to capture
in a lab setting. Instead, we only provide some fabrication
statistics here. It takes ∼2 hours to cut out all four laminate
legs for a single design. The 3D-printed parts take ∼6 hours
and do not need to be reprinted when changing the leg design.
The assembly time of the legs is∼2 hours for an experienced
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Table 6. Estimation of the prototype’s material cost in US dollars

Part Details Unit cost Quantity Total cost Category %

Servos ROBOTIS XC330-T181-T 89.90 8.0000 719.20 Servos 88.2

MCU ROBOTIS OpenCM9.04-C 23.80 1.0000 23.80

Electronics 9.2Battery TATTU 11.1V 3S 450mAh 75C XT30 plug 15.99 1.0000 15.99

IMU Adafruit BNO055 34.95 1.0000 34.95

Fiberglass ACP Composites FSB-015-05-P 0.015” 36” x 48” 105.45 0.030 3.15

Structures 2.6

Fiberglass ACP Composites FSB-030-05-P 0.030” 36” x 48” 94.55 0.030 2.83

Fiberglass ACP Composites FSB-063-05-P 0.063” 36” x 48” 138.80 0.052 7.24

Polyester Grafix Dura-Lar 0.005” 40” x 25’ 54.10 0.004 0.23

Adhesive DRYTAC MHA25328 25.5” x 328’ 436.49 0.002 0.67

3D printed Ultimaker PLA 2.85mm 750g 58.00 0.043 2.49

Screws, staples, wires, zip ties, friction tape, etc. 5.00

Total 815.55

person and the assembly of the rest of the robot needs another
∼2 hours. Swapping all four legs from one design to another
takes ∼0.5 hours. The laser cutter used is an Epilog Fusion
M2 40. The 3D printer is a Ultimaker 3.
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