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Abstract— Redesigning and remanufacturing robots are in-
feasible for resource-constrained environments like space or
undersea. This work thus studies how to evaluate and repurpose
existing, complementary, quadruped legs for new tasks. We
implement this approach on 15 robot designs generated from
combining six pre-selected leg designs. The performance maps
for force-based locomotion tasks like pulling, pushing, and
carrying objects are constructed via a learned policy that
works across all designs and adapts to the limits of each.
Performance predictions agree well with real-world validation
results. The robot can locomote at 0.5 body lengths per second
while exerting a force that is almost 60% of its weight.

I. INTRODUCTION

In resource-constrained environments the opportunity for
redesigning or remanufacturing robots can be limited. Cer-
tain kinds of exploration enabled by robots require pre-
manufacturing parts in advance and bringing them with you.
This can often be seen in the redundant systems employed
in space or undersea missions, where the cost of transporting
replacement parts is not feasible.

Motivated by these scenarios, we aim to study how to
evaluate combinations of existing, complementary, but not
completely redundant parts and select the one that best
suits the desired job. As shown in Fig. 1, our approach
has been applied to a quadruped robot whose legs can be
fabricated in various configurations based on a common
template, and their behaviors can be tuned across a wide
range of geometric and physical parameters. This work also
focuses on force-based locomotion tasks, requiring the robot
to perform positive work upon external objects in situations
unanticipated during the original design step. This type
of repurposing may become necessary and useful for our
targeted applications and is the focus of our paper.

This work is based on our recently submitted work that
formulates a pipeline for the design, fabrication, learning,
evaluation, and selection of laminate legs with embedded
compliance [1]. In that work, we looked at the role that
combining the design process with a learned locomotion
policy can have on selecting legs for achieving various
velocity-based locomotion metrics. Our current work uses
a limited set of leg designs suggested by it.

The contributions of this work are summarized as fol-
lows: 1) an extension of the design, fabrication, learning,
evaluation, and selection pipeline to include force-based
locomotion tasks and asymmetric robot designs, improv-
ing the generality of our approach; 2) a demonstration of
constructing performance maps for a limited set of leg
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Fig. 1. (a) 15 robot designs are generated from mixing and matching 6
pre-selected leg designs; reinforcement learning is used to evaluate their
performance for force-based locomotion tasks. (b) Three of the designs are
tested with the learned policy in the real world, performing tasks such as
(c) pulling a box, carrying a payload, and walking freely. More details of
the experiments are available in the supplementary video.

designs to repurpose them for different tasks and study
roles of asymmetry in quadruped’s force capabilities; 3) and
insights from real-world validations on the capabilities of
the simulation environments for centimeter-scaled compliant
robots under loads.

The rest of the paper is organized in the following way:
Section I-A provides some more background literature re-
lated to this work; Section II-A mainly recaps the leg and
robot designs; Section II-B explains the learning framework
for teaching our robot to perform force-based locomotion
tasks; Section II-C listed the experiments performed; Section
III discusses the evaluation results of the various robot
designs; and this paper concludes in Section IV.

A. Background

For legged systems, the spring-loaded inverted pendulum
(SLIP) model is a simple but effective model for describing
the fundamental dynamics of walking and running [2], [3]. It
is also widely used in robotics to study the design of robotic
legs [4], [5], [6], [7], [8]. Most of the existing works on leg
designs usually concern only pure locomotion tasks without



doing work to external objects. For example, the design of
iSprawl hexapod involves tuning the leg compliance with
the SLIP model to achieve smooth running gaits [4]. As for
Salto, mechanical advantage tuning can also be paired with
the series elasticity in the SLIP model to achieve extreme
vertical jumping agility [7]. One of our earlier works studies
the effect of nonlinear series leg stiffness for jumping [8].

However, as the robots and tasks become complex with
more contact and friction behaviors with the floor and
surrounding objects, this simple model will become less
accurate. More recent works have started to employ model-
based or learning-based approaches to add more capabilities
beyond pure locomotion to legged robots [9], [10], [11].
An adaptive manipulation controller paired with a model
predictive controller is proposed for regulating the contact
force to push an unknown object on unknown terrain [9].
Reinforcement learning can also be leveraged to train policies
for quadrupeds to push and pull objects with their whole
body [11] or an attached arm [10].

While there are many advancements in the control of
legged robots for loco-manipulation tasks, few works treat
the robot design as a variable and study its impact on perfor-
mance. Interestingly, some simulation-based works deal with
co-designing or evolving robots or creatures for both loco-
motion [12], [13] and manipulation tasks such as carrying,
pushing, and throwing objects [14], [15]. In contrast, this and
our previous work focus on bridging the simulation and the
real world with accessible laminate design and fabrication
techniques and extensive real-world validations.

Since our approach is grounded in reality, some artificial
and empirical decisions are necessary to keep the design
space compact. Allowing asymmetry for our robot – that
is, having different front and rear legs – is inspired by
existing works showing some benefits of asymmetric designs:
an asymmetric segmented body results in smaller cost of
transport (COT) [16] and asymmetric body-mass distribution
leads to lower stride frequency and smaller duty factor
[17]. Our concept of combining limited parts for different
performances and tasks also takes inspiration from the design
optimization and control of modular robots [18], [19], though
we emphasize passive components in a distinctly different
form factor.

II. METHODS

A. Robot Design

1) Robot: As shown in Fig. 1, the robot used in this work
has a footprint similar in area to an adult’s hand and weighs
under 500 g. Each of its legs is actuated by two identical
servo motors acting in series. The abduction and adduction
joints have been omitted. The robot has a battery, an IMU
sensor, and a microcontroller on board. The policy is run on
a laptop and communicates with the robot through a USB
cable. All four legs can be swapped with different designs,
as discussed next. More details of the robot can be found in
previous work [1].

20 mm
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Fig. 2. All 6 leg designs used to form different robot designs. Details of
the design and fabrication of the tunable leg can be found in our previous
work [1].

TABLE I
THEORETICAL LEG PROPERTIES

dvx dwz dCOT dh dl dk

Total Leg length (m) 0.12 0.06 0.14 0.06 0.14 0.12

Foot Travel length (m) 0.04 0.02 0.02 0.02 0.10 0.02

Moment arm (m) 0.067 0.067 0.067 0.033 0.067 0.022

Parallel Stiffness (N/m) 22 22 45 0 0 202

Series Stiffness (N/m) 360 360 360 1800 270 4050

2) Legs: Inspired by the SLIP model, the leg used in our
current work is designed to function similarly to a pogo
stick. It is composed of four main components: a femur
link connecting the hip and knee joint, a four-bar linkage
that converts knee rotation into linear foot translation going
through the hip, a parallel spring that resists leg retraction,
and a series spring that allows the foot to move even if the
knee servo is fixed. The tunable properties of the leg include
the maximum leg length from the foot to the hip, the total
travel length of the foot, the moment arm or transmission
ratio for converting knee rotation to foot travel, and the
parallel and series leg stiffness along the foot travel direction.
The leg in the current study aligns with our previous work
[1].

As shown in Fig. 2, six leg variants have been selected
and fabricated for this work. These previously-identified
designs represent the diverse design space of the tunable leg
and possess unique geometric and dynamic characteristics
including fast longitudinal running dvx , fast turning dwz ,
low cost of transport dCOT , short height dh, long foot travel
dl, and high parallel and series stiffness dk. Their theoretical
leg properties are listed in Table I.

3) Mix and Match: Allowing asymmetry between the
front and rear legs is a simple way to expand the robot
design space with limited leg selections. In theory, the six
leg variants can generate 21 robot designs based on the
combinations with repetition formula [20]. However, since
some combinations with large leg length differences resulted
in failures to walk during preliminary testing, they were
excluded. Fifteen robot designs δ0,1,...,14 are left, as shown
in Fig. 1 (a).

B. Learning Force-based Locomotion

1) Policy Design: This work uses reinforcement learning
to train a neural network policy to control the robot’s
locomotion under external forces in simulation. A learning-
based approach was selected principally because the complex



design and control space made a first-principles approach less
feasible. A single policy was trained for use across all robot
designs. We assume that this saved time by learning similar
fundamental behaviors, and reduced the chance of the policy
prematurely settling at local solutions optimal for one design.
The proposed policy has the following inputs and outputs,
which is an adaptation of our previous work:

π(at|vcmd
t ,p,f , qt, q̇t, gt,wt,at−1,df ,dr) . (1)

As shown in Fig. 3, the main goal of the policy is to make
the robot follow a velocity command vcmd

t = [vcmd
x , wcmd

z ]
consisting of the longitudinal speed and turning speed while
an external force f = [fx, fz] is applied to the robot at
p = [px, pz]. The available action at ∈ R8 for the policy
represents the desired joint positions sent to the servos. Since
our robot lacks active abduction and adduction, we do not
command lateral speeds vcmd

y ; force commands therefore lie
in the sagittal plane. The velocity and force are defined in a
reference frame whose x axis is parallel to the floor, xz plane
aligns with the robot’s heading, and origin coincides with the
body’s center, since the robot’s body is not necessarily level
across all leg pairs.

By specifying the external force vector and its application
point about different locations on the robot, it is possible
to simulate a variety of loading conditions similar to real-
world scenarios. A force applied to the front of the robot
toward the body indicates that the robot is pushing a load. A
vertical downward force applied to the robot body represents
carrying payloads. These combinations also naturally encode
moments applied to the robot, which can significantly impact
load-carrying ability. This formulation ignores inertia related
to external loads since we focus on the robot’s performance
during steady-state locomotion.

The policy has access to a range of sensory feedback that
is available on the actual prototype, including joint angles
qt ∈ R8, joint velocities q̇t ∈ R8, body orientation gt ∈
R3 expressed as the gravity direction in the robot’s body
frame, and body angular velocities wt ∈ R3. The policy also
observes its last action at−1. Additionally, since the policy
must accommodate different front and rear leg designs, the
design vector df and dr are provided in the observations,
containing the values of the tunable leg properties mentioned
in Section II-A.2. We also expose applied force values to the
policy. The real-world experiments are thus designed such
that the forces applied to the robot are known and remain
relatively constant throughout the test. One final point of
note: since we are more interested in the robot’s capability
of doing positive work such as pulling or pushing loads, the
direction of the longitudinal speed vcmd

x remains opposite to
the direction of the horizontal force fx during all evaluations.

The policy is a fully connected neural network with three
hidden layers of size [512, 256, 128] and ELU activations
operating at 100 Hz. The actions and observations are scaled
and offset to approximately within the range of [−1, 1] before
being fed into the policy.

2) Curriculum Design: A curriculum for the training pro-
cess is deployed for two main reasons: it can be challenging
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Fig. 3. Definitions of the velocity command, external force application
point, and external force vector for the policy. The bounding boxes for the
application point and force vector are also shown.

for a robot to learn how to move under large external
forces initially, so a gradual increase in the external force
is desirable; and the bounds of the external force that the
robot can handle are also unknown, requiring a way to
automatically identify them during training.

For a single robot design, we construct a discretized force
application space Φ̂ ∈ R4 containing force applications
ϕ̂ = [p̂, f̂ ] = [p̂x, p̂z, f̂x, f̂z] with a step size sΦ̂ =
[0.1m, 0.05m, 1N, 1N ]. To prevent the curriculum from
exerting forces that may damage the actual physical robot
and limit the force application space Φ̂ to a reasonable
size so that the training does not take too long, the lower
and upper bounds for ϕ̂ are ±[0.1m, 0.05m, 3.5N, 3.5N ].
These essentially limit Φ̂ to a 3× 3× 8× 8 grid, which has
a high enough resolution to reveal trends while remaining
tractable. This curriculum strategy is a modification to the
one used in our previous work that only employs two
dimensions – in that case the longitudinal and turning speed.

At the beginning of the training, the four points near the
origin ϕ̂ = [0, 0,±0.5,±0.5] are in the space Φ̂. As the train-
ing progresses, the space is expanded by adding neighbors
of a force application that the robot can handle, meaning
that ema(r̄v) > rthv where ema(r̄v) is the exponential
moving average (EMA), with a 0.1 smoothing factor, of the
average velocity reward of an episode. The velocity reward is
defined as rv = 2exp(−25∥v−vcmd∥2) and the threshold is
rthv = 1.21. The neighbors of a force application ϕ̂ is defined
as ϕ̂n = ϕ̂+sΦ̂ ·Irow where Irow is one of the rows of the
identity matrices I4 and −I4, which is an extension to the
2 dimensional 4-connectivity. For each episode, the actual
force applied to the robot is ϕ which is uniformly chosen
within (ϕ̂ − 0.5sϕ̂, ϕ̂ + 0.5sϕ̂), where ϕ̂ is also uniformly
sampled from the latest Φ̂. Since different robot designs can
have different learning difficulties and limits, the training
keeps a curriculum for each leg design and updates them
individually based on their respective policy performance.

In addition, although the achievable velocities of the robot
may also depend on applied forces, we do not include them in
the curriculum to keep training time manageable. The bounds
for vcmd are set to ±[0.3m/s, 0.3 rad/s], a relatively small
range for our robot. For each force application, the velocity
command is uniformly sampled from this range with the
constraint that it is opposite to the horizontal force fx.



3) Learning Environment: For each episode during train-
ing, the robot is equipped with a design that is uniformly
sampled from the 15 designs; it tries to track the velocity
commanded under an external force. The external force is
converted manually to a wrench applied to the CoM of the
robot body. A random disturbance wrench with magnitudes
up to ±10% of the applied one is also added. Domain
randomization including servo dynamics parameters, floor
properties, sensor noise, and system latency is also applied;
details can be found in our previous work.

Modifications to the previous reward terms are also nec-
essary for successful learning: the hip joint is no longer
required to move around the center point, but the difference
between the average left and right hip joint angles over a
second needs to be penalized to generate more symmetric
gaits; the body pitch does not need to be level to account for
the difference between front and rear legs; and vertical body
speeds are also penalized to stay away from a suboptimal
bouncing gait.

C. Experiments

1) Training and Evaluation: We trained the policy using
Proximal Policy Optimization for 300k updates over about
110 hours, after which the growth rate of the curriculum
space slowed. Details of the software implementation, hy-
perparameters, and hardware can also be found in [1].

To evaluate the performance of the learned policy and
the capability of each robot design, the policy was tasked
to control the robot in the same randomized simulation
environments subjected to every force application ϕ̂ added
to the space Φ̂ during the training. Each trial lasted for
2 seconds, and the average velocity reward rv and COT
starting from one second was recorded to get the steady-state
performance. COT = p̄

mg|v̄x| where p̄ and v̄x are the average
positive mechanical power and average actual longitudinal
speed. For a single ϕ̂, 200 trials were performed and the
results were averaged. The COT was only considered if the
commanded longitudinal speed was greater than 0.1 m/s to
avoid getting large values that masked actual trends.

2) Real-world Validations: To validate the performance of
the policy and reveal trends discovered from the evaluation
results, we tested three robot prototypes. Details of the design
selection are discussed in the following section. For each
design, the policy was tasked to walk for 5 seconds at a con-
stant velocity vcmd

t = [±0.2m/s, 0 rad/s] under different
loading conditions made up from a horizontal force fx ∈
[0N, 1N, 2N, 3N ] and a vertical force fz ∈ [0N,−2N ]
applied to the robot’s body center p = [0m, 0m]. As shown
in Fig. 4, to apply horizontal forces, a box of various weights
was attached to the back of the robot with a string; the
robot therefore pulled the weight of the box in all tests. The
string was roughly level to the floor; it was aligned to go
through the robot body’s center. The weights placed in the
box were tuned to ensure that the kinetic friction roughly
matched the desired values. Vertical forces were added
by strapping weights to the robot’s main body. Off-center

Weights

Measuring tape

String Box with weights

USB Cable

Fig. 4. Experimental setup for the real-world validations. The robot pulls a
box of weights through a string. The speed is measured with the measuring
tape and on-board sensory data are collected from the USB cable.

loading conditions were not tested since implementing them
was less feasible and repeatable given available resources.

For each condition, the average speed was obtained by
measuring the distance between a start and end point with
a measuring tape and dividing it by the elapsed time. The
mechanical power was estimated from the on-board joint
velocity and current data. The COT was calculated similarly
to the simulation. 3 trials were conducted for every condition.

III. RESULTS AND DISCUSSIONS

A. Policy Evaluation

While the evaluation was performed in simulated envi-
ronments with various randomized parameters, the results
should still exhibit general trends across different designs
and be useful for guiding the design selection for different
tasks. The evaluation results are visualized in Fig. 6 and 7.
Zoom-in views of the velocity reward results for the robot
design δ0 are shown in Fig. 5. As in Fig. 5 (a), the 3×3 grid
represents the different force application points around the
robot. For example, the top left cell as in Fig. 5 (b) depicts the
average performance of the robot subjecting to forces applied
to the region above the rear legs in the sagittal plane, which
means p̂ = [−0.01, 0.05] and px ∈ (−0.015,−0.05) and
pz ∈ (0.025, 0.075). Within a cell, a single pixel represents
the average performance for a specific force range. For
example, a pixel below and to the left of the origin indicated
by a black dot means f̂ = [−0.5,−0.5] and fx ∈ (−1, 0)
and fz ∈ (−1, 0). Since the longitudinal speed command is
always opposing the horizontal force direction. Within each
cell, the left half separated by the dashed line implies that
the robot is moving forward or to the right in Fig. 1 (a) and
the right half is for moving backward. Although grouped
together due to their shared leg pairs, they actually represent
two very different scenarios and use cases.

1) Individual Designs: When looking at individual de-
signs, the cells in the middle column have a shape similar to
an isosceles triangle, which should be related to the friction
cone concept: a larger normal force results in larger frictional
forces, meaning that the robot can exert a larger pulling
or pushing force on its load. The ratio of the maximum
horizontal force to the vertical one is related to the friction
coefficient. This ratio approximately falls within the range
from 3/7=0.43 to 4/7=0.57, which is expected considering
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Fig. 5. Evaluation results of the velocity reward for the robot design δ0.
(a) shows the complete grid and (b) is a zoom-in view of the top left cell.

that the friction coefficient range for the simulated environ-
ments was from 0.4 to 1.0, and the evaluation results were
averaged over many trials under different conditions.

Another trend is that the area of a cell generally becomes
smaller as the force application points move away from the
body center horizontally. This is related to the additional
induced moment decreasing the normal forces for the feet.
This trend is less obvious in the vertical direction since the
step size for the vertical offset is half of the horizontal one.

These findings demonstrate that our training method is
capable of estimating the limits for the robot’s capability
subjected to simulated physics. Moreover, it is also able
to identify gaits that work within these limits at the same
time. The benefits of this approach can reduce the time and
effort required for manually designing and tuning controllers
across different robot designs, thus permitting more time for
additional design iteration and validation.

2) Across Designs: Comparing the performance across
robot designs, differences are visible for both the velocity
tracking and COT metrics. For each design, four metrics
are further established: the total velocity reward for moving
across forward and backward locomotion, and the average
COT across forward and backward cases as well. Distin-
guishing the direction of motion is justified since many
designs with different front and rear legs may be more or less
suitable for different use cases. Their performance scores are
plotted in Fig. 8, where the values below the diagonal are
for the robot moving forward.

Visible in this plot are distinct performance differences be-
tween moving forward and backward. Design δ11 is the most
obvious, with a 17% velocity reward difference and a 33%
average COT difference. However, since even symmetric
designs also display some asymmetric performance, part of
the difference can be attributed to the unbalanced capability
of the learned policy and the influence of the stochasticity of
the tests on the overall results. For the total velocity reward,
the average difference of the asymmetric designs is 6%,
slightly larger than the 4% of the symmetric ones. Therefore,
it is safe to conclude that the heading direction does not
significantly affect the pulling and pushing capabilities of
our robot. This is also reasonable, considering that the legs
function similarly to a pogo stick, which should not have
many directional preferences on relatively smooth floors, as
in this work. If the floors had more variations and asperities,

δ0 δ1 δ2 δ3 δ4

δ5 δ6 δ7 δ8 δ9

δ10 δ11 δ12 δ13 δ14

0.2 0.5 0.9 1.2 1.6
Velocity reward

Fig. 6. Evaluation results of the velocity reward for all robot designs. A
lighter color indicates better performance.
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COT

Fig. 7. Evaluation results of the COT for all robot designs. A darker color
indicates better performance.

the different angles of attack of the legs resulting from leg
length differences could lead to more interesting behavior.

Fig. 8 is also useful for comparing the performance of
robots with different leg combinations. For total velocity
reward, robots with legs dvx and dl outperform the others.
We hypothesize that their longer foot travel allows them
to do more work within each gait cycle. Studies involving
more leg designs are needed to verify this. For COT, robots
with the leg dCOT perform better than their peers. Our
previous study had also selected dCOT for its low COT
during pure locomotion. Biological studies have shown that
longer legs generally have lower COT [21], which agrees
with our previous results. This work further demonstrates
that this trend applies to robots in loaded conditions.

There is no conclusive evidence that combining different
leg designs can achieve much better performance than their
symmetric counterparts. For example, dl paired with itself
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TABLE II
PERFORMANCE OF SELECTED DESIGNS FOR REAL-WORLD VALIDATIONS

Robot Designs δ2 δ8 δ11

Legs [dl,dvx ] [dl,dCOT ] [dl,dh]

Sim
Total velocity reward 375 348 283

Average COT 1.29 1.13 1.79

Real
Average speed (m/s) 0.10 0.11 0.08

Average COT 1.79 1.20 4.61

or dvx perform almost equally well in terms of the total
velocity reward, but the performance degrades if it is paired
with other worse leg designs. dCOT has similar stories for
the average COT. Interestingly, this could indicate that the
performance of asymmetric robots can be roughly predicted
by averaging its symmetric versions, which could greatly
reduce the computation time because only symmetric designs
need to be learned and evaluated.

B. Real-world Validations

Three robot designs were selected for real-world vali-
dations as listed in Table II. All of them have leg dl as
the rear legs so that we can verify that changing the leg
combinations does alter the performance. Moreover, they all
have some unique performance characteristics based on the
evaluation in the simulation environments. δ0 and δ8 are
better at withstanding external loads than δ11 since their total
velocity reward is higher. δ8 has the lowest COT.

As marked in Table II, the real-world results agree
well with the simulation in terms of performance rankings,
demonstrating that the proposed pipeline is a useful tool for
selecting designs based on task objectives. To be noted, the
average speed of all the conditions for each design is used
instead of total velocity reward because velocity data over
time are not available.

The detailed data for the real-world experiments are
plotted in Fig. 9 and 10. As the magnitude of the pulling
force increases, the actual speed of the robot drops and the
COT increases. The COT is also higher when the robot is
loaded. The speed error compared to the commanded speed
of 0.2 m/s is relatively large for several potential reasons:
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Fig. 9. Average speed of the selected robot designs under various loading
conditions. The shaded regions indicate the range of the data.
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Fig. 10. COT of the selected robot designs under various loading
conditions. The shaded regions indicate the range of the data.

there are noticeable unintended and unmodeled compliance
and backlash for both legs and servos, making the locomotion
less stable and more shaky, especially under load; the traction
provided by the friction tape wrapped around the narrow feet
is less reliable; and the additional inertia of the load is not
considered during training in the simulation.

IV. CONCLUSIONS

Given quadruped designs generated from a set of pre-
selected legs, this work proposes a pipeline for evaluating
their performance for force-based locomotion tasks that re-
quire doing positive work upon external objects such as push-
ing, pulling, and carrying loads. Our learning-based approach
produces a policy that works across designs and adapts to the
limits of each. Evaluation results enable us to select designs
suitable for different performance goals, and the real-world
validations show good agreement. We show that asymmetric
robot designs produce more performance variety, but do not
necessarily lead to significant improvement.

We believe that the proposed approach based on reinforce-
ment learning is a powerful tool for constructing performance
maps of a complex robot design space in which dynam-
ics are discontinuous, nonlinear, and stochastic. This work
showcases the potential for producing customized robots
for different applications, and discovering underlying design
principles that may often be hidden by system complexity. In
the future, we plan to improve the computational efficiency
of our framework and extend it beyond legged robots.
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